Student's name: Anas Abdelhalim Tomaizeh

Student's number: 1152325

Ötssign. \#t
\mathscr{P} ower device switching
Dr. MU. O2tdu-K.Kaizaran

Abstract:

The aim of this assignment is to implemented IGBT in a chopper circuit, and to simulate it using ORCAD to graph the voltage, current and power charastaristics.

Theory:

- Insulated Gate Gipolar Transistor (IGBTs):

> The circuit sympol of IGBT is shown in the Fig. 1-a bellow, and i-v charastaristic is shown in the Fig. 1-b bellow.

Fig. 1-a:
Fig. 1-b

Some advanteges of IGBT:

1) Is batter than MOSFET and BJT.
2) High input impadance so, it is required only a small amount of energy to switch the device.
3) IGBT have turn-on turn-off on the order of $1 \mu \mathrm{~s}$.
$>$ Some apllications of IGBT:
IGBT is finding increasing application in medum power application for example, DC motor and AC motor drives and power supply.

- Snubber Circuit:

The aim of the snubber circuit is to reduse the electrical stress placed on the device during swiching.

\checkmark More function of snubber circuit:

1. Limiting voltages applied to devices during turn-off transients.
2. Limiting device currents during turn-on transients.
3. Limiting the rate of rise (dildr) of currents through devices at device turn-on.
4. Limiting the rate of rise (dv/dt) of voltages across devices during device turn-off.
or during reapplied forward blocking voltages (e.g., SCRs during the forwardblocking state).
5. Shaping of the switching trajectory of the device as it turns on and off.

From the circuit topology perspective, there are three broad classes of snubber circuit:

1. Unpolarized series R-C snubbers used to protect diodes and thyristors by limiting
the maximum voltage and $d v / d t$ at reverse recovery.
2. Polarized R-C snubbers. These snubbers are used to shape the turn-off portion of
the switching trajectory of controllable switches, to clamp voltages applied to the devices to safe levels, or to limit dv/dr during device turn-off. 3. Polarized L-R snubbers. These snubbers are used to shape the turn-on switching
trajectory of controllable switches and/or to limit dildt during device turn-on.
\checkmark Freewheeling diode:when turn-on the swich the result is stored energy in the inductor, this energy will be dissipated in the form spark, so use a Freewheeling diode across the load to provide an alternative path for the current when the swich is off.

Calculation:

Part one: high inductive load:

1) the average power losses during conduction in the IGBT

Pon $=$ Von*Io*Ton*Fs
$=2.5 * 25 * 30 u * 15 K=28.125$ watt
2) The total avarege power losses during switching in the switch is:

Ps=1/2*Fs*Vd*Io*($\left.T_{\text {clon })}+T_{\text {c(off) }}\right)$
$=0.5 * 15 \mathrm{~K} * 400 * 25 * 1000 * 10^{-9}=75$ watt.

Part two: resistive load:

1) The avarege conduction power loss is:

$$
\begin{aligned}
& \text { Pon=Von*Io*Fs*Ton } \\
& =2.5^{*}(400-2.5 / 15) * 15 K^{*} 30^{*} 10^{\wedge}-6=29.8125 \text { watt. }
\end{aligned}
$$

2) Total average switiching power loss with resisteve load is:

$$
\begin{aligned}
& \text { Ps=1/6*Fs*Vdc*Io*(Tc'on'+Tc'off') } \\
& =1 / 6 * 15 K^{*} 400 *(400-2.5 / 15)^{*}\left(1000 * 10^{-9}\right)=26.5 \text { watt. }
\end{aligned}
$$

For high inductive load: Circuit diagram:

The result:

Conclusion:

Zoom for part one: high inductive load:

According to the graph 'zoom for part one, shown above' note that:

- There is an over shoot in the voltage curve, since there is a voltage drop across the stray inductance at turn-on state.
- The tail current shown in the current curve, since that the IGBT turns off as an open Base BJT.
- The voltage start increasing when the current is still unchanged, but it is got in a few microsecond, so no need to snubbers' circuit to protect the power electronics device.
- In this case, we use a Freewheeling diode because the inductance load stored the energy when the switch is on, so to protect the device from the spark we use this diode.

Zoom for part two: resistive load:

According the graph 'zoom for part two, shown above' note that:

- The voltage begins increasing when the current starts decreasing at the same time , but it is got in a few microsecond (less than in high inductive load), so no need to snubbers circuit to protect the power electronics device.
- We didn't use a Freewheeling diode in this case because no energy stored in the resistive load.

NOTE THAT: The error in simulation: the power dissipated in IGBT in the ideal case is equal: $\mathrm{V}_{\mathrm{d}} * I_{o}=$ 400*25=10KW but in the graph the result is about 9 KW and that is because the stray inductance which makes a over-shot in the voltage and in the current, also the power dissipated in IGBT when it is connect with resistive load is $1 / 3$ of power dissipated when it is connect with high inductive load.

References:

> 1) Muhammad H. Rashid 'Power Electronics: Circuits, Devices and Applications', 4th edition Prentice Hall 2013.
2) Ned Mohan, Tore M. Undeland, and William P. Robbins 'Power
Electronics: Converters, Application, and Design', 3rd edition 2003.
3) Lecture note, Dr. M. Abu-Khaizaran.

Failer try to solve the assign, use MATLAB SIMULINK.

